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Addictive drugs act on brain reward systems, although the brain
evolved to respond not to drugs but to natural rewards, such as
food and sex. Appropriate responses to natural rewards were
evolutionarily important for survival, reproduction, and fitness. In
a quirk of evolutionary fate, humans discovered how to stimulate
this system artificially with drugs. Many molecular features of
neural systems instantiating reward, and of those systems affected
by addictive drugs, are conserved across species from Drosophilae
to rats to humans and include dopamine (DA), G-proteins, pro-
tein kinases, amine transporters, and transcription factors such as
cAMP response element-binding protein (CREB). A better un-
derstanding of natural brain reward systems will therefore en-
hance understanding of the neural causation of addiction.

Reinforcers, drives, and incentive systems
It is first helpful to consider how the field has moved conceptually
in recent decades. Although emotions are unobservable, many
objective expressions and behavioral, physiological, and neural
responses to emotional stimuli have been selected by evolution.
Studies of these objective responses in animals and humans pro-
vide valuable windows into brain reward function. Early drive
theories held that hunger and thirst states motivated behavior
directly as aversive drive states and that reinforcers simply re-
duced those states, strengthening preceding stimulus–response
(S–R) habits or increasing the probability of operant response
emission. Rewards are recognized now to act at least as impor-
tantly as hedonic incentives, causing neural representations that
elicit motivation and goal pursuit, rather than as mere habit
reinforcers. Physiological drive states nevertheless play important
roles in incentive motivation, but primarily by increasing the
perceived hedonic and incentive value of the corresponding re-
ward; for example, food tastes better when hungry, drink when
thirsty, and so on. Perhaps surprisingly, even drug reward and
withdrawal appear to motivate drug-taking behavior primarily via
incentive modulation principles rather than directly via simple
aversive drives (Stewart and Wise, 1992). Accordingly, it be-
hooves affective neuroscientists to understand the neural basis of
incentive properties of rewards.

Mesocorticolimbic dopamine: pleasure, reinforcement,
reward prediction, incentive salience, or what?
It has long been recognized that reward processing depends on
mesocorticolimbic DA systems, comprising DA neurons in the
ventral tegmental area (VTA) and their projections to nucleus
accumbens (NAc), amygdala, prefrontal cortex (PFC), and other
forebrain regions. Major efforts have attempted to specify what
function this system contributes. Does mesocorticolimbic DA
mediate the pleasure of reward stimuli? This was originally sug-
gested because mesocorticolimbic systems are activated by many
natural and drug rewards, and their blockade impairs the behav-
ioral effectiveness of most reinforcers (Wise, 1985). Do mesocor-
ticolimbic projections instead learn and predict the occurrence of
rewards? That influential associative hypothesis was based on
evidence that DA neurons fire to cues that predict rewards but not
to already predicted hedonic rewards (Schultz, 2000). Do meso-
corticolimbic DA systems mediate the incentive salience attrib-
uted to neural representations of rewards and cues, causing them
to become perceived as “wanted” goals? That incentive “want-
ing” hypothesis was based originally on evidence that mesolimbic
DA is not needed to mediate the hedonic impact or “liking” for
sweet rewards, or new learning about them, despite its importance
for motivated behavior to obtain the same rewards (Berridge and
Robinson, 1998). Or finally, does mesocorticolimbic DA involve-
ment in reward pursuit reflect broader functions, such as atten-
tion, complex sensorimotor integration, effort, or switching
among behavioral programs? Those functions were proposed on
the basis of various observations that do not readily fit a pure
reward framework (Salamone, 1994; Gray et al., 1999; Ikemoto
and Panksepp, 1999; Redgrave et al., 1999; Horvitz, 2000). Each
hypothesis has its adherents, although there is recognition that
they share important commonalities, and a consensus on motiva-
tional incentive function may now be forming.

Gaining a more correct answer to the question of “what does
DA do in reward” is of great importance to understanding ad-
diction, because addictive drugs are widely agreed to act primar-
ily, although not exclusively, on brain mesocorticolimbic systems.
For example, hedonic theories of addiction assume that mesocor-
ticolimbic DA systems chiefly mediate the intense pleasure of
addictive drugs and anhedonia during withdrawal (Volkow et al.,
1999; Koob and Le Moal, 2001). Learning-based addiction theo-
ries assume sensitized or altered cellular mechanisms of associa-
tive S-R learning, and reward predictions cause ingrained drug-
taking habits (Di Chiara, 1998; Kelley, 1999; Berke and Hyman,
2000; Everitt et al., 2001). The incentive-sensitization theory of
addiction assumes that neural sensitization causes excessive attri-
bution of incentive salience to drug-associated stimuli and acts,
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which makes addicts compulsively “want” to take drugs again
(Robinson and Berridge, 1993, 2000; Hyman and Malenka, 2001).

Regarding natural reward contributions to addiction neuro-
science, it is notable that all the major hypotheses of mesocorti-
colimbic DA function studies were proposed originally on the
basis of studies of natural reward. Therefore, a better understand-
ing of what DA does for natural rewards will clarify brain mech-
anisms of drug addiction.

Mesocorticolimbic dopamine: appetitive versus
aversive motivation
Beyond having a role in reward, mesocorticolimbic systems also
participate in negative emotional states and aversive motivation.
What relation could negative motivation (other than withdrawal)
have to addiction? Aversive symptoms of psychosis, paranoia, or
anxiety are sometimes precipitated in human addicts and in
animal models by drugs such as amphetamine or cocaine (Etten-
berg and Geist, 1993), but how can a brain “reward system” also
mediate negative motivation and emotion? Some hypotheses
suggest that mesocorticolimbic systems mediate general func-
tions, such as attention or sensorimotor integration, and not
reward or aversion specifically (Salamone, 1994; Gray et al., 1999;
Horvitz, 2000). Another hypothesis is that DA responses to
aversive motivation reflect hidden incentive mechanisms involved
in the pursuit of safety (Rada et al., 1998; Ikemoto and Panksepp,
1999), drawing on psychological theories of avoidance learning.
In other words, active pursuit of food when hungry or of safety
when in danger could involve similar mesocorticolimbic incentive
processes. However, most researchers probably support a third
hypothesis that certain mesocorticolimbic systems play an active
role in aversive motivation itself, distinct from DA mediation of
reward (Salamone, 1994; Berridge and Robinson, 1998; Gray et
al., 1999).

Several lines of evidence indicate direct mesocorticolimbic
mediation of aversive motivation. Mesocorticolimbic brain sys-
tems are activated in animals and humans by aversive stimuli such
as stress, electric shocks, etc. (Piazza et al., 1996; Becerra et al.,
2001). Amphetamine administration enhances aversive associa-
tive conditioning of behavioral responses (Gray et al., 1999),
whereas lesions of the NAc core disrupt conditioning of aversive
responses to Pavlovian cues (Parkinson et al., 1999). Negative
motivation versus reward may be mediated by different mesocor-
ticolimbic channels of information processing. Neuroanatomical
and neurochemical segregation of valence are indicated by obser-
vations that GABAergic microinjections in the NAc shell can
elicit either intense positive motivation or negative motivation,
depending on the shell subregion. GABA agonist microinjections
in the anterior medial shell elicit appetitive eating behavior, but
the same microinjections in the posterior medial shell elicit fear-
ful defensive treading (Stratford and Kelley, 1999; Reynolds and
Berridge, 2001), a behavior normally reserved by rodents in the
wild for noxious stimuli such as threatening rattlesnakes (Treit et
al., 1981; Coss and Owings, 1989; Owings and Morton, 1998).
Further clarification of how mesocorticolimbic subsystems code
positive versus negative motivational states should be a high
priority as a means to shed light on why drugs of abuse sometimes
produce mixed motivational effects, including anxiety and sus-
ceptibility to psychosis.

Natural rewards as windows into reward “liking”
versus reward “wanting”
Although drug addicts want to take drugs more than other people,
they may not proportionately like those drugs more, especially if

neuropharmacological tolerance grows to their pleasurable im-
pact; however, distinctions between neural systems of “wanting”
reward and “liking” reward have emerged most clearly from
studies of natural rewards, especially sweet taste reward, where it
is possible to use affective facial expressions to measure immedi-
ate “liking” or hedonic impact. In human infants (Fig. 1), sucrose
taste elicits a set of facial “liking” expressions (tongue protru-
sions, smile, etc), whereas quinine taste elicits facial “disliking”
expressions (gape, etc.) (Steiner et al., 2001). Comparisons of
human infant expressions with those of at least 11 great ape and
monkey species indicate that primate expression patterns for
“liking” and “disliking” are characterized by strong taxonomic
continuity across species and by homology of microstructure
features, such as allometric control of component speed (Steiner
et al., 2001). Even rats display these reactions to tastes that reflect
core affective processes and hedonic neural mechanisms homol-
ogous to those of humans (Grill and Norgren, 1978; Berridge,
2000).

Opioid peptide neurotransmission within the NAc modulates
the hedonic impact of food reward (Glass et al., 1999; Peciña and
Berridge, 2000; Kelley et al., 2002), providing further support that
drugs of abuse act on systems evolved to mediate such natural
pleasures as sweetness “liking.” For example, microinjection of
morphine into NAc shell directly increases rat “liking” orofacial
expressions elicited by sucrose (Peciña and Berridge, 2000) and
alters intake consistent with enhanced food palatability (Zhang
and Kelley, 2000). Such findings demonstrate the importance of
neurochemical systems other than dopamine in the hedonic im-
pact of rewards.

Originally surprising were findings that mesocorticolimbic DA
manipulations do not change “liking” for the taste of sucrose
(Peciña et al., 1997; Wyvell and Berridge, 2000), despite their role
in incentive “wanting” for these and other rewards. The neuro-
chemical dissociation of “liking” from “wanting” has obvious
relevance to addiction. The incentive–sensitization theory sug-
gests that addiction may be characterized by increased “wanting”
of drugs caused by sensitized DA-related systems, even in the
absence of drug “liking” (Robinson and Berridge, 2000; Hyman
and Malenka, 2001).

From nodes to dynamic networks
Reward-related behavior emerges from the dynamic activity of
entire neural networks rather than from any single brain struc-
ture. The functions of NAc, amygdala, etc., in natural reward or
addiction can be understood only in terms of the extended neural
system within which they reside (Fig. 2). Although we now have a
working knowledge of key brain structures of reward, deeper
understanding will require examination of network interactions
between subregions of amygdala, PFC, NAc, and other structures
in reward and motivation (Kalivas and Nakamura, 1999; Rolls,
1999; Everitt et al., 2000; Schultz, 2000; Jackson and Moghaddam,
2001). For example, amygdala and orbital prefrontal cortex may
play complementary roles in reward learning regarding acquisi-
tion of cue incentive value versus response selection (Schoen-
baum et al., 1999; Baxter et al., 2000).

A further network feature concerns the efferent projections of
NAc to target structures such as lateral hypothalamus and ventral
pallidum. This outflow appears crucial to NAc mediation of
natural appetitive behavior (Kalivas and Nakamura, 1999; Strat-
ford and Kelley, 1999; Zahm, 2000). Elicitation of eating behavior
by inhibition of spiny neurons in the NAc shell depends on signals
to the lateral hypothalamus, which activates lateral hypothalamic
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neurons via disinhibition (Rada et al., 1997; Stratford and Kelley,
1999). Thus, the NAc shell may gate corticolimbic information to
the lateral hypothalamus and exert executive control over brain
circuits controlling feeding behavior and related motivation
(Kelley, 1999; Petrovich et al., 2001). This corticostriatal–hypo-
thalamic–brainstem network deserves to be the focus of further
study, in the contexts of both natural reward and addiction (Swan-
son, 2000).

Neural ensembles and behavioral selection
Dynamic modulation of incentive value emerges from afferent
network signals that cause variation in the states of individual
medium spiny NAc neurons. For example, these neurons exhibit
“bistable” membrane potential states, which depend on phasic
excitatory glutamatergic input from afferent structures such as
hippocampus (O’Donnell and Grace, 1995). NAc neurons are
depolarized by PFC input when they are in the hippocampal-
gated “up” state, and thus network synchrony arises between NAc
and hippocampus (Goto and O’Donnell, 2001). Similar gating of
NAc neurons may occur between amygdala and hippocampal
inputs (Mulder et al., 1998; Floresco et al., 2001b). DA input also
plays a critical role in the NAc switching and is influenced in turn
by hippocampal glutamatergic input to VTA (Legault and Wise,
2001). Thus, dynamic modulation by incoming network signals
can control which NAc motivational ensembles predominate to
guide behavior toward natural or drug rewards.

Network plasticity mediated by
DA–glutamate interactions
Addictive drugs induce long-term neuroadaptations at the struc-
tural, cellular, molecular, and genomic levels (Hyman and
Malenka, 2001), but how does such plasticity relate to natural
reward and motivation? An exciting synthesis is emerging from
studies of glutamate–DA-mediated plasticity and its transcrip-
tional consequences. Coincident activation of DA D1 receptors
and glutamate NMDA receptors plays a critical role in shaping

synaptic configurations and neural ensembles involved in motiva-
tion and learning.

In both striatum and PFC, D1 activation potentiates NMDA
responses (Seamans et al., 2001; Wang and O’Donnell, 2001), and
long-term potentiation at hippocampal–prefrontal cortex syn-
apses is dependent on coactivation of NMDA and D1 receptors
and on intracellular cascades involving protein kinase A (Gurden
et al., 2000). Sensitization by drugs of abuse is facilitated by a
related glutamate–dopamine interaction caused when drugs are
administered in a novel distinct environment (Uslaner et al.,
2001). In accumbens neurons, cooperative action of both D1 and
NMDA receptors mediates hippocampal-evoked spiking activity
(Floresco et al., 2001b), and a similar synergism is observed for
the amygdalo-accumbens pathway (Floresco et al., 2001a). Mo-
lecular studies complement these findings, showing NMDA-
receptor dependence of D1-mediated phosphorylation of CREB
(Konradi et al., 1996; Das et al., 1997), a transcription factor
thought to be an evolutionarily conserved modulator of memory
processes. Transcriptional consequences of NMDA and D1 co-
activation in the NAc core and PFC are necessary for appetitive
learning about cues, rewards, and behavioral actions, particularly
at early acquisition stages (Baldwin et al., 2000, 2002a,b; Smith-
Roe and Kelley, 2000). In sum, coordinated activation of DA D1
and NMDA systems within corticolimbic–striatal circuits is an
important feature of adaptive reward learning.

This story suggests that drugs of abuse that target DA and
glutamate synapses should enduringly modify basic cellular and
molecular functions. Such long-lasting plasticity in reward neu-
rons induced by drugs may contribute to abnormal information
processing and behavior, resulting in poor decision making, loss
of control, and the compulsivity that characterizes addiction.
That drugs of abuse induce D1- and NMDA-mediated neuronal
cascades shared with normal reward learning is an important
insight regarding addiction that has emerged in the past decade.

Figure 1. Naturalistic behavior assays of
reward liking and negative fearful defense.
Liking facial expressions are elicited by the
taste of sucrose from newborn human in-
fants, orangutans, and rats [top lef t, facial
photographs from Steiner et al. (2001) and
Berridge (2000)]. Disliking expressions are
elicited by the taste of quinine. NAc coronal
map of opioid liking and wanting sites for
food reward shows intensity of food want-
ing produced by morphine microinjections
in the shell [bottom lef t, Peciña and Ber-
ridge (2000)]. Accompanying graph shows
the increase in sucrose liking reactions
caused by morphine microinjections in the
accumbens shell. Conversely, anxiogenic
and psychotic effects of addictive drugs may
be related to natural fearful active defense
reactions (right). Fearful defensive treading
is elicited naturally from rodents by rattle-
snake predators and centrally by GABA
agonist microinjections in the caudal ac-
cumbens shell [California ground squirrel
photograph by John Cooke from Coss and
Owings (1989); rat photograph from Reyn-
olds and Berridge (2001)]. Bar graph shows
elicitation of fearful defensive treading

along a rostrocaudal gradient in the NAc shell after GABA agonist microinjections (Reynolds and Berridge, 2001). Separate mesocorticolimbic channels
for appetitive and aversive motivational functions is suggested by sagittal map of NAc shell rostrocaudal segregation of GABA-elicited positive feeding
behavior (anterior x symbols) versus fearful defensive behavior ( posterior squares).
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Reward outside traditional limbic network?
Although little studied, reward may also be significantly processed
in brain structures not traditionally considered mesocorticolim-
bic, motivational, or related to addiction. For example, “motor”
regions of caudate–putamen contain neurons that respond to
food and drink reward stimuli, in a manner similar to DAergic or
ventral striatal neurons (Aosaki et al., 1994; Schultz, 2000). Eat-
ing can be elicited in rats directly by microinjections of opioid
agonists into these same motor regions of dorsal striatum (Zhang
and Kelley, 2000). Eating is disrupted by DA receptor blockade or
lesions in the same dorsal striatal regions (Cousins and Salamone,
1996). Sensorimotor regions of striatum undergo dynamic
changes during rewarded “habit” learning (Jog et al., 1999), and
their damage impairs learning (Packard and White, 1990). Such
evidence suggests that “sensorimotor” structures may participate
in natural reward functions to a surprising degree (White, 1989).
If so, such extended neural reward processing has implications for
addiction as well.

Conclusion
Drugs can impact natural brain reward systems to produce addic-
tion in only three ways. (1) Drug rewards might activate the same
brain systems as intense natural rewards. Addiction theories

based on pleasurable drug hedonia or positive reinforcement
suppose that drugs act as natural rewards. (2) Addictive drug
rewards might also change the quantitative scaling of some re-
ward components, fragmenting and distorting normal reward
processes to cause compulsive behavior. Addiction theories based
on sensitization of incentive salience propose that drugs sensitize
mesocorticolimbic substrates of incentive salience, fractionating
natural reward by intensifying “wanting” disproportionately to
cause compulsive drug taking behavior (Robinson and Berridge,
2000; Hyman and Malenka, 2001). Addiction theories based on
associative long-term potentiation or alterations in learning sys-
tems propose unusually strong drug-taking S-R habits (O’Brien et
al., 1992; Di Chiara, 1998; Robbins and Everitt, 1999; Berke and
Hyman, 2000; Everitt et al., 2001). (3) Addictive drugs could
induce new brain processes, such as aversive withdrawal states,
which may play larger opponent-process roles for addiction than
for normal rewards (Solomon and Corbit, 1974; Koob and Le
Moal, 2001).

These three possibilities are exhaustive but not mutually exclu-
sive. Many intriguing facts have been discovered that illuminate
their interaction. Future studies will further clarify how drugs
interact with brain reward systems to produce the compulsive
motivation and relapse that characterize addiction.

Figure 2. Schematic representation of rat brain sagittal section depicting pathways involved in processing of natural rewards and in neural plasticity
underlying reward-related learning. Circuitry represented in blue indicates long glutamatergic pathways between prefrontal cortex (PFC), amygdala
(Amyg), hippocampus (Hipp), ventral striatum (nucleus accumbens), and ventral tegmental area (VTA). Red circuitry represents principal ascending
mesocorticolimbic dopamine systems. Green descending pathways indicate primarily GABAergic descending systems. Triangles in corresponding colors
indicate similar DA, glutamate, and GABAergic coding in dorsal striatum. Violet-shaded boxes represent important nodes within this distributed network
where NMDA/D1 receptor-mediated plasticity is proposed to be a critical substrate for behavioral adaptation and learning. For purposes of simplicity,
not all relevant circuitry is shown; for example, there are important connections between hypothalamus and amygdala, and glutamatergic thalamic inputs
are not shown. Drawing of section is based on the atlas of Paxinos and Watson (1998). Large arrows indicate flow of effector pathways converging on
viscero–endocrine and autonomic systems (emerging from hypothalamus and amygdala) and somatic voluntary motor systems (emerging from basal
ganglia and ventral midbrain). Inset reflects intracellular and genomic mechanisms hypothesized to govern DA- and glutamate-dependent plasticity
within the indicated (violet shaded) nodes. Such plasticity, which may result in altered network activity, is hypothesized to mediate normal learning and
memory related to natural rewards but is also a key component of addiction. AcbC, Accumbens core; Acb shell, accumbens shell; Cpu, caudate–putamen;
VP, ventral pallidum; Hypo, hypothalamus; SN, substantia nigra. Other abbreviations can be found in Paxinos and Watson (1998).
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