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Neuroimaging technology has provided unprecedented
opportunities for elucidating the anatomical correlates of major
depression. The knowledge gained from imaging research and
from the postmortem studies that have been guided by imaging
data is catalyzing a paradigm shift in which primary mood
disorders are conceptualized as illnesses that involve
abnormalities of brain structure, as well as of brain function.
These data suggest specific hypotheses regarding the neural
mechanisms underlying pathological emotional processing in
mood disorders. They particularly support a role for dysfunction
within the prefrontal cortical and striatal systems that normally
modulate limbic and brainstem structures involved in mediating
emotional behavior in the pathogenesis of depressive symptoms.
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Abbreviations
ACC anterior cingulate cortex
BD bipolar disorder
CBF cerebral blood flow 
CSF cerebrospinal fluid
DA dopamine
LCSPT limbic–cortical–striatal–pallidal–thalamic
LTC limbic–thalamo–cortical
mPFC medial PFC 
MDD major depressive disorder
MDE major depressive episodes
MRI magnetic resonance imaging
NE norepinephrine
OCD obsessive-compulsive disorder
PAG periaqueductal grey
PET positron emission tomography 
PFC prefrontal cortex
VLPFC ventrolateral PFC 
VTA ventral tegmental area

Introduction
Major depressive episodes (MDE) are several-week- to
several-year-long periods in which conscious mental activi-
ty is dominated by persistent dysphoric emotions and
thoughts, which coexist with disturbances of motivated and
psychomotor behavior, sleep, appetite, energy, and libido
[1]. Despite the application of the descriptive term ‘depres-
sion’, the dominant emotional symptoms of MDE can
instead include anxiety, irritability, or anhedonia (inability
to experience pleasure or reward) [1]. Such episodes may
occur secondary to specific medical or neurological illnesses,
other psychiatric disorders, or pharmacological agents.
They may also arise in the absence of medical or psychiatric

antecedents as primary, idiopathic disorders, termed ‘major
depressive disorder’ (MDD) when only depressive
episodes occur, or ‘bipolar disorder’ (BD; also known as
‘manic-depressive illness’) when manic episodes also occur.
The most common mood disorder, MDD, rivals hyperten-
sion as the most frequently treated illness in primary health
care, and is a leading cause of disability worldwide [2].

The etiology and pathophysiology of MDE remain poorly
understood. Twin, adoption and family studies indicate
that both genetic and environmental factors contribute to
the risk for developing MDD and BD [1]. The environ-
mental factors commonly proposed to be involved in the
pathogenesis of MDE are psychosocial stressors, although
causal links between stressors and MDE have been diffi-
cult to establish. Patients with recurrent MDE usually
conclude that their pattern of depressive symptoms is not
coupled to stressful life situations (with the exception of
childbirth, as the post-partum period is the epoch of great-
est risk in females). Nevertheless, stress plays a prominent
role in the clinical phenomenology of MDD and BD, as
ordinary work-demands and interpersonal interactions are
perceived as being exceedingly stressful during MDE. 

Primary mood disorders (in which the onset of MDD or BD
temporally precedes that of other major medical or psychi-
atric disorders) have been associated with a variety of
neuroendocrine, neurochemical, neurophysiological, and
neuromorphometric abnormalities [1]. It is not known, how-
ever, whether these abnormalities cause a vulnerability to
abnormal mood episodes, or whether they are compensatory
changes to other pathogenic processes or sequelae of recur-
rent illness. The neurobiological systems affected by these
abnormalities nevertheless suggest intriguing hypotheses for
the development of the cognitive-emotional manifestations
of mood disorders, which are discussed in this review.

Neuroimaging studies of mood disorders
Neuroimaging technology has afforded the ability to investi-
gate neurophysiological, neuroanatomical and neurochemical
correlates of mood disorders in vivo [1,3]. The results of such
studies are being complimented by converging data from
post mortem studies, some of which have been specifically
guided by neuroimaging data, to elucidate interactions
between abnormalities of brain structure and function in 
primary mood disorders [3]. These experimental approaches
are also being combined to investigate the therapeutic mech-
anisms of antidepressant and mood-stabilizing drugs, which
are now known to modulate signal transduction pathways and
neuroprotective/neurotrophic factor gene expression, as well
as neurotransmitter function, in the brain regions where
abnormalities are found in mood disorders [4•,5].
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Progress has nevertheless been achieved amidst controversy
about the specific locations and directions of abnormalities in
depressed patient samples. Technical issues of image acquisi-
tion, data analysis and study design (e.g. differences in the
subjects’ medication status or behavioral condition during
scanning) have contributed to some of the apparent inconsis-
tencies across studies [3]. Nevertheless, the greatest obstacle
to achieving consensus in the literature probably reflects 
fundamental problems in defining a phenotype which is
homogenous with respect to imaging abnormalities [1].

Clinical neuroscientific investigations into the biology of
mood disorders struggle with the limitation that psychiatric
nosology remains at a syndromatic level, in which nonspe-
cific behavioral signs and symptoms (e.g. insomnia,
fatigue, low mood, impaired concentration), rather than
pathophysiology, are used to define MDD. Consequently,
specific links between syndrome and pathophysiology may
not exist, and the MDD diagnostic criteria are expected to
encompass an etiopathologically heterogenous group of
disorders. Not surprisingly, the diagnosis of MDD per se
has generally proven insufficient for identifying subject
samples with reproducible neuroimaging abnormalities.

Additional clinical parameters that affect the sensitivity
and specificity of imaging results in MDD include age at
illness-onset, family history, melancholic features, and
response to biological interventions. Thus, MDD patient
samples who have either early-onset familial illness,
melancholic subtype (MDE accompanied by anhedonia,
insomnia in the early morning, anorexia or weight loss, 
psychomotor changes, and/or pathological guilt [1]), or
responsivity to sleep deprivation or serotonin depletion
show abnormal cerebral blood flow (CBF) and glucose
metabolism in the amygdala, the ventral anterior cingulate
cortex (ACC), the orbital, ventrolateral, and dorsomedial/
dorsal anterolateral portions of the prefrontal cortex (PFC),
the anterior insula, the ventral striatum, the posterior 
cingulate gyrus and the medial thalamus (for a review, see
[3]; Figures 1–4). The abnormalities in many of these
regions are, to some extent, mood-state-dependent, impli-
cating areas where neurophysiological activity may
increase or decrease to mediate or respond to the emotional
and cognitive manifestations of the depressive syndrome.
The pattern of metabolic changes during MDE suggests
that brain structures that have been implicated by other
types of evidence in mediating emotional and stress
responses (e.g. the amygdala) are pathologically activated;
brain areas thought to modulate or inhibit emotional
expression are also activated (e.g. posterior orbital cortex);
and, areas implicated in attention and sensory processing
are deactivated (e.g. dorsal ACC) [6]. During antidepres-
sant drug treatment, some of these state-dependent
changes reverse in those patients who respond to treat-
ment. Nevertheless, CBF and metabolism do not entirely
normalize during symptom remission in many of these
structures. The regions where neurophysiological abnor-
malities persist independently of mood-state have also

been shown to contain abnormalities of grey matter vol-
ume and/or histology [3,7–9]

The findings in such MDD samples contrast with those of
elderly subjects who have a late age of MDD onset; instead,
these elderly subjects have magnetic resonance imaging
(MRI) and hemodynamic correlates of cerebrovascular 
disease [3,10] and of depressed subjects with neurodegenera-
tive conditions [11]. The disparate findings between such
late-onset cases versus early-onset, familial cases nevertheless
appear to be unified by the neural circuits implicated by their
respective anatomical correlates. The regional neuroimaging
and neuropathological abnormalities in primary mood 
disorders coincide with the regions implicated by studies of
depression arising in the context of neurodegenerative illness
or cerebrovascular disease [11–13]. Such studies implicate
limbic–thalamo–cortical (LTC) circuits, involving the 
amygdala, medial thalamus, and orbital and medial PFC, and
limbic–cortical–striatal–pallidal–thalamic (LCSPT) circuits,
involving the components of the LTC circuit along with relat-
ed parts of the striatum and pallidum (Figure 3) [14]. Because
these conditions disturb the LCSPT and LTC circuitry in 
different ways, imbalances within these circuits, rather than
overall increased or decreased synaptic activity in a particular
structure, may increase the risk for developing MDE [14].

In contrast, surgical lesions that interrupt projections from
the orbital cortex into the striatum can ameliorate 
depression if the limbic projections into the striatum or
anterior cingulate are also severed, as would occur during
neurosurgical interventions for intractable depression

Figure 1

Areas of abnormally increased CBF in familial MDD shown in an image
of t-values, produced by a voxel-by-voxel computation of the unpaired
t-statistic to compare CBF between depressed and control samples
[14]. The positive t-values in this sagittal section at 17 mm left of
midline (x = –17) show areas of increased CBF in depressives relative
to controls in the amygdala and medial orbital cortex. Abnormal activity
in these regions in MDD was confirmed using higher resolution
glucose metabolic measures in other studies [3,76]. Anterior is to the
left. Modified from Price et al. [58].
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(e.g. subcaudate tractotomy, prefrontal/limbic leukectomy,
anterior cingulotomy [15–19]). Therefore, neural mecha-
nisms of depression may more specifically involve
dysfunction of the PFC or striatum that impairs the corti-
cal modulation of limbic input (e.g. from the amygdala) to
the cortex and brain stem [3]. On the basis of this general
model, specific hypotheses regarding the pathogenesis of
some cognitive-emotional features of MDE are suggested
by the pattern of neuroimaging abnormalities within the
PFC and amygdala in MDD.

Elevated physiological activity in the amygdala:
implications for emotional behavior
Abnormal elevations of resting CBF and glucose metabo-
lism in the amygdala have been consistently reported in
depressives who have familial MDD or melancholic 
subtype, and have been inconsistently reported in BD
(Figures 1,2; [3,14]). The magnitude of this abnormality as
measured by positron emisson tomography (PET) has
ranged from 5% to 7% (Figure 2), which, when corrected
for spatial-resolution effects, would reflect an increase in
the actual CBF and metabolism of about 50 to 70% [14,20].
This is in the physiological range, as CBF increases by
about 50% in the rat amygdala during exposure to fear-
conditioned stimuli as measured by tissue autoradiography
[21]. Limitations in spatial resolution have precluded
implication of specific amygdalar nuclei. 

Amygdalar CBF and metabolism correlate positively with
the severity of depression [14,22,23]. The positive correla-
tion between neurophysiological activity in the amygdala
and depression severity rated by Hamilton Depression

Rating Scale scores may reflect the amygdala’s role in 
organizing multiple aspects of emotional/stress responses
(Figure 5) [24]. During antidepressant treatment that both
induces and maintains symptom remission, amygdala
metabolism decreases to normative levels, compatible with
preclinical evidence that chronic antidepressant drug
administration has inhibitory effects on amygdala function
(for a review, see [25]). 

Functional imaging studies acquired during behavioral or
neuropsychological challenge suggest that the physiologi-
cal responsivity of the amygdala may also differentiate
depressives from healthy controls. For example, in the left
amygdala, the normal increases in hemodynamic activity
during exposure to pictures of fearful human faces is atten-
uated, whereas the corresponding response to sad faces is
exaggerated in depressives relative to controls [26]. In
addition, Nofzinger et al. [27] report that whereas amygdala
metabolism is increased in depressives versus controls dur-
ing wakefulness, the increase in metabolism that occurs
during rapid eye movement (REM) sleep is also greater in
depressives than in controls. 

Implications for the pathogenesis of depressive
thought content
Neuroimaging, electrophysiological and lesion analysis
studies in humans and experimental animals have demon-
strated that the amygdala is involved in the recall of
emotional or arousing memories [28–30]. In humans, bursts
of electroencephalographic (EEG) activity have been
recorded in the amygdala during recollection of specific
emotional events [31]. Moreover, electrical stimulation of

Figure 2

Mean normalized physiological activity (± SEM)
measured as either CBF or glucose metabolism
is abnormally elevated in the left amygdala in mid-
life depressed subjects relative to healthy
controls. The five consecutive studies, obtained
using different PET cameras (PET VI, HR+ and
953B are PET scanner model numbers, the latter
two manufactured by Siemens/CTI) in different
laboratories in independent subject samples, are
summarized in Drevets et al. [9,14,102]. 2D and
3D refer to distinct image acquisition modes. In
all five studies, the normalized blood flow or
metabolism was significantly increased in
depressive samples with either FPDD or BD
relative to healthy controls. Because the first
glucose metabolism study (center) showed that
both FPDD and BD-D samples significantly
differed from controls, but not from each other,
subjects from these categories were combined
for two of the subsequent studies (second and
fourth panels). rCBF/gCBF, regional-to-global
cerebral blood flow ratio; rMRglu/gMRglu, ratio
of regional-to-global metabolic rates for glucose;
CON, healthy controls; FPDD, familial pure
depressive disease; BD-D, depressed phase of
bipolar disorder.
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the human amygdala can evoke emotional experiences
(especially fear or anxiety) [32] and recall of emotionally
charged life-events from remote memory [33].

Taken together with the finding of elevated amygdala
metabolism in MDD, these observations suggest the
hypothesis that excessive amygdalar stimulation of cortical
structures involved in declarative memory may account for
the tendency of depressed subjects to ‘ruminate’ on 
memories of emotionally aversive or guilt-provoking life-
events [34]. The intrusive nature of such thought patterns,
and their responsiveness to antidepressant drugs, suggest
that abnormal brain processes underlie these symptoms. In
some cases, such ideation acquires a stereotypic or obses-
sional nature, and the same thought content may recur in
each new MDE.

Amygdala dysfunction in mood disorders may also conceiv-
ably alter the initial evaluation and memory consolidation
related to sensory or social stimuli with respect to their emo-
tional significance. The amygdala is involved in the
acquisition, consolidation and expression of emotional/
arousing memories (e.g. aversive conditioning) [28–30,35,36]
and plays a role in recognizing fear and sadness in facial
expression [37–39] and fear and anger in spoken language
[40]. Norepinephrine (NE) release in the amygdala plays a
critical role in at least some types of emotional learning

[41–43]. The activation of NE neurons is facilitated by the
effect of stress hormone (glucocorticoid) secretion [43].
Depressed subjects have abnormally elevated secretion of
both NE and cortisol [44,45,46••], which, in the presence of
amygdala activation, may conceivably increase the likelihood
that ordinary social or sensory stimuli are perceived or
remembered as being aversive or emotionally arousing.

Role of the prefrontal cortex in modulating
emotional behavior
Multiple areas of the medial and orbital PFC appear to
play roles in modulating emotional behavior. These struc-
tures are thought to participate in modifying behavioral
responses based upon competing or changing reinforce-
ment contingencies [47–49]. Some of these areas also
participate in modulating autonomic and endocrine
responses to stress [50–52,53••,54••]. These areas share
extensive, reciprocal projections with the amygdala,
through which the amygdala modulates PFC neuronal
activity and the PFC modulates amygdala-mediated
responses to emotionally salient stimuli [52,53••–55••].

The medial PFC (mPFC) areas implicated in emotional
behavior in humans and experimental animals include the
infralimbic cortex, the ACC areas located ventrally 
(‘subgenual’) and anterior (‘pregenual’) to the genu of the
corpus callosum, and the dorsomedial/dorsal anterolateral

Figure 3

Anatomical circuits implicated by
neuroimaging and neuropathological studies
of familial mood disorders (primary references
reviewed in [3]). The regional abnormalities
summarized are hypothesized to contribute to
the genesis of pathological emotional
behavior. Regions shaded in red have
neuromorphometric and/or histopathological
abnormalities in primary MDD and/or BD (see
text). Regions shaded in yellow have not been
microscopically examined in mood-disordered
patients, but are areas where structural
abnormalities are suspected on the basis of
the finding of third ventricle enlargement in
children and adults with BD. Open arrows to
the right of each region indicate the direction
of abnormalities in CBF and metabolism
reported in depressives relative to controls
(cyan ‘?’, PET data await replication). The blue
open arrow indicates the direction of
metabolic abnormalities after correcting the
PET measures for partial volume effects of
reduced grey matter volume (blue ‘?’,
decreased grey matter is suspected as the
explanation for reductions in CBF and
metabolism, but partial volume-corrected PET
results have not been reported). Solid lines
indicate major anatomical connections
between structures (weak projections, such
as that from the orbital cortex back to the
subiculum [65], are not included), with closed
arrowheads indicating the direction of
projecting axons (reciprocal connections have

arrowheads at both ends). Affected prefrontal
cortical areas include the VLPFC and orbital
PFC (Orb), the anterior cingulate gyrus ventral
and anterior to the genu of the corpus
callosum (subgenual PFC [SGPFC] and
pregenual anterior cingulate [PAC],
respectively), and the dorsomedial/dorsal
anterolateral PFC (DM/DALPFC). A.Ins refers

to the anterior (agranular) insula. The parts 
of the striatum under consideration are the
ventromedial caudate and nucleus
accumbens, which particularly project to the
ventral pallidum. BNST, bed nucleus of the
stria terminalis; LC, locus coeruleus; NTS,
nucleus tractus solitarius; V, ventral. 
Modified from [3].
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PFC extending from the rostral ACC onto the frontal pole
[3,53••]. The projections between the amygdala and the
mPFC have been implicated in attenuating fear responses
and extinguishing behavioral responses to fear-conditioned
stimuli that are no longer reinforced [52,54••]. Conversely,
lesions of the ACC enhance freezing to fear-conditioned

stimuli in rats, consistent with the hypothesis that this
region is involved in the reduction of responses to fearful
stimuli [52]. Moreover, neurons in the prelimbic cortex
reduce their spontaneous firing activity in the presence of
a conditioned, aversive tone to an extent that is inversely
proportional to the magnitude of fear [55••]. This suppres-
sion of prelimbic cortex neuronal firing activity is inversely
correlated with increases in amygdala neuronal activity
[55••]. Finally, lesions of the infralimbic cortex interfere
with the recall of extinction learning after long delays
between the acquisition of extinction learning and reexpo-
sure to the initial conditioned stimulus [54••]. Extinction
appears to require new learning through which the 
behavioral response to the conditioned stimulus is actively
inhibited [56].

In the pregenual ACC, physiological activity is elevated
during the depressed phase of some MDD subtypes
[14,57] and during anxiety states elicited in healthy or 
anxiety-disordered subjects [3,6]. Electrical stimulation of
this region elicits fear, panic or a sense of foreboding in
humans, and vocalization in experimental animals (for a
review, see [58]). Nevertheless, physiological activity also
increases in the ACC during the generation of positive
emotions in humans [59,60].

In the subgenual PFC, abnormalities in CBF and metabo-
lism in familial MDD and BD are associated with a
left-lateralized reduction in the cortex volume (Figure 4)
[8,9,61•,62]. Physiological activity in this region is higher in
the depressed than in the remitted phase of MDD, and
increases in healthy humans during experimentally
induced sadness [48,57,63] and in post-traumatic stress 
disorder (PTSD) subjects during internally generated
imagery of past trauma [64].

The subgenual and pregenual ACC share reciprocal anatom-
ical connections with areas implicated in emotional behavior
such as the posterior orbital cortex, amygdala, hypothalamus,
nucleus accumbens, periaqueductal grey (PAG), ventral
tegmental area (VTA), raphe nucleus, locus coeruleus, and
nucleus tractus solitarius (Figure 3; [65,66]). Humans with
lesions that include the ventral ACC show abnormal 
autonomic responses to emotionally provocative stimuli, an
inability to experience emotion related to concepts, and
inability to use information regarding the probability of 
aversive social consequences versus reward in guiding social
behavior [67]. In rats, bilateral or right-lateralized lesions of the
mPFC strip, which includes infralimbic, prelimbic (approxi-
mately homologous to subgenual PFC [8]) and ACC cortices,
attenuate corticosterone secretion, sympathetic autonomic
responses, and gastric stress pathology during restraint stress
or exposure to fear-conditioned stimuli [51,52,68]. In contrast,
left-sided lesions of this cortical strip increase sympathetic
arousal and corticosterone responses to restraint stress [68].
These data have led to the hypothesis that the right ventral
mPFC facilitates expression of visceral responses during
emotional processing, whereas the left modulates such

Figure 4

Altered metabolism in the prefrontal cortex (PFC) ventral to the genu of
the corpus callosum (i.e. subgenual PFC) in mood disorders. The top
panel shows negative voxel t-values where glucose metabolism is
decreased in depressives relative to controls in coronal (31 mm
anterior to the anterior commissure, or y = 31) and sagittal (3 mm left
of midline, or x = –3) planes of a statistical parametric image that
compares depressives relative to controls [9]. The reduction in activity
in this region appears to be accounted for by a corresponding
reduction in cortex volume [8,9]. Anterior or left is to the left. Modified
from Drevets et al. [9]. The bar histogram in the lower panel shows
mean, normalized, glucose metabolic values in the subgenual PFC
measured using MRI-based region-of-interest analysis. Metabolism is
decreased in depressed subjects who are either BD (“Bipolar
depressed”) or MDD (“Unipolar depressed”) relative to healthy
controls. In contrast, subjects scanned in the manic phase of BD
(“Bipolar manic”) have higher metabolism than either depressed or
control subjects in this region. *Difference between controls and
bipolar depressives significant at p<0.025; †difference between
depressed and manic significant at p<0.01; ‡difference between
control and manic significant at p<0.05. CC, corpus callosum.
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responses [68]. This hypothesis is noteworthy in light of the
left-lateralized reduction of grey matter volume in the 
subgenual PFC in MDD and BD, and of PET data showing
that right subgenual PFC metabolism correlates positively
with depression severity in MDD [3]. Dysfunction of the left
mPFC may thus conceivably contribute to the altered 
neuroendocrine and autonomic function evident in depres-
sion by disinhibiting responses driven by the right mPFC.

Finally, in the dorsomedial and dorsal anterolateral PFC,
blood flow and metabolism are reduced in MDD [3,69,70].
In healthy humans, blood flow increases in these areas dur-
ing performance of tasks that elicit emotional responses or
require emotional evaluations [71,72]. During anticipation of
an electrical shock, CBF increases in the dorsomedial PFC,
yet the magnitude of CBF correlates inversely with changes
in anxiety ratings and heart rate [73]. In rats, lesions of the
rostral mPFC result in exaggerated heart-rate responses to
fear-conditioned stimuli, and stimulation of these sites atten-
uates defensive behavior and cardiovascular responses
evoked by amygdala stimulation [51]. In primates, these
areas send extensive efferent projections to the PAG and the
hypothalamus, through which they may modulate cardiovas-
cular responses associated with emotional behavior
(Figure 3) [53••,74]. In MDD, the dorsal anterolateral PFC
has been shown to have abnormal reductions in the size of

glia and neurons [7], raising the possibility that dysfunction
of this region may interfere with the modulation of anxiety
symptoms in mood disorders.

The orbital and ventrolateral prefrontal cortex
In the posterior and lateral orbital cortex, the anterior 
insula, and the ventrolateral PFC (VLPFC), metabolic
activity is abnormally elevated in resting, unmedicated 
subjects with primary MDD [3]. Physiological activity also
increases in these areas during experimentally induced 
anxiety states in healthy subjects and in subjects with 
obsessive-compulsive disorder (OCD), simple phobia or
panic disorder [6,23,75]. Although CBF and metabolism
increase in these areas in the depressed relative to the remit-
ted phase, however, their magnitude correlates inversely
with ratings of depressive ideation and severity [14,76].
Similarly, posterior orbital blood flow increases in OCD and
in animal-phobic subjects during exposure to phobic stimuli
and in healthy subjects during induced sadness, but the
change in CBF correlates inversely with changes in obses-
sive thinking [75,76], phobic anxiety [23] and sadness [77].

These data appear to be consistent with electrophysiolog-
ical and lesion analysis data showing that the orbital cortex
participates in inhibiting behavioral and visceral responses
associated with fearful, defensive, and reward-directed

Figure 5

Putative roles of the amygdala in organizing
multiple aspects of emotional/stress
responses (adapted from Davis [24], LeDoux
[29]), potentially accounting for the positive
correlation between amygdala metabolism
and depression severity in MDD [3]. The
projections, depicted together with putative
behavioral correlates of increased stimulation
by the central nucleus of the amygdala (ACe),
include the following. ACe facilitates stress-
related corticotropin-releasing hormone
(CRH) release via both intrinsic CRH-
containing neurons and bisynaptic (double
GABA-ergic, with minus signs indicating
inhibitory connections) anatomical projections
to the paraventricular nucleus (PVN) of the
hypothalamus [103], potentially accounting
for the increased limbic drive on CRH
secretion in MDD (for a review, see [104]).
The behavioral effects of CRH administration,
based upon studies in rats, are reviewed in
[45]. An excessive amygdalar drive on the
PAG may conceivably contribute to
depressive signs such as inactivity, panic
attacks and reduced pain sensitivity: in
experimental animals, stimulation of
ventrolateral (VL) PAG produces social
withdrawal, behavioral quiescence and
hypoalgesia, whereas stimulation of lateral
PAG produces defensive behaviors,
sympathetic autonomic arousal, and
hypoalgesia [58,74,105]. Excessive efferent
amygdala transmission to the lateral
hypothalamus and locus coeruleus (LC) could

also potentially contribute to the elevated
heart rate, behavioral arousal and insomnia
seen in MDD [24,44]. Amygdalar stimulation
of the dorsal motor nucleus (N) of the vagus
nerve and the nucleus ambiguous is
hypothesized to underlie the gastrointestinal
symptoms (e.g. irritable bowel syndrome)
sometimes seen during MDE. Stimulation of
trigeminal and facial motor nuclei by the ACe,
which have been implicated in the production
of facial expressions of anxiety [24], may
account for the facial muscle tension
reported in depression [1]. Activation of the

amygdalar projections to the nucleus
accumbens arrests goal-directed behavior in
experimental animals [78], suggesting a
possible neural mechanism for the cessation
of motivated or reward-directed behavior
during MDE. In humans, electrical stimulation
of the amygdala can produce anxiety, fear,
dysphoria, increased cortisol secretion, and
vivid recollection of emotionally provocative
events from remote memory [32,33,106].
BLA, basolateral nucleus of the amygdala;
BP, blood pressure; HPA, hypothalamic–
pituitary–adrenal axis.
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behavior as reinforcement contingencies change. Nearly
one-half of orbital cortex pyramidal cells alter their firing
rates during the delay between stimulus and response, and
this firing activity relates to the presence or absence of
reinforcement [49]. These cells are thought to play roles in
extinguishing unreinforced responses to aversive or appet-
itive stimuli [49,58,78]. The posterior and lateral orbital
cortex and the amygdala send reciprocal projections to
each other and to overlapping portions of the striatum,
hypothalamus, and PAG, through which these structures
modulate each other’s neural transmission (Figure 3;
[55••,65,74,78]). For example, the defensive behaviors and
cardiovascular responses evoked by electrical stimulation
of the amygdala are attenuated or ablated by concomitant
stimulation of orbital sites that, when stimulated alone,
produce no autonomic effects [79].

Humans with orbital cortex lesions perseverate in behav-
iors that are unreinforced and exhibit difficulty shifting
cognitive strategies in response to changing task demands
[49,80]. Likewise, monkeys with lesions of the lateral
orbital cortex/VLPFC demonstrate ‘perseverative interfer-
ence’, characterized by difficulty in learning to withhold
prepotent responses to non-reinforced stimuli as reinforce-
ment contingencies change [81]. Activation of the orbital
cortex during depressive, obsessional or anxiety states may
thus reflect endogenous attempts to interrupt unrein-
forced aversive thought and emotion [3]. Nevertheless, the
abnormal reductions of grey matter, glia, and neuronal size
reported in the orbital cortex and the VLPFC in MDD
[7,82] raise the possibility that disturbed synaptic interac-
tions between these regions and the amygdala, striatum,
hypothalamus or PAG may impair the ability to inhibit
nonreinforced or maladaptive emotional, cognitive, and
behavioral responses. Such a deficit could conceivably lead
to the perseverative cognitive and emotional responses to
stressors seen during MDE.

Dysfunction of neural systems involved in
processing motivation and reward
Another core feature of MDE is a pervasive absence of
behavioral incentive. This is clinically manifested by apathy,
anhedonia, amotivation, and loss of interest in hobbies,
socialization, work, food, and sex. This condition renders
positive life-events ineffective at altering the depressed state
and causes potentially enjoyable or rewarding activities to be
curtailed or engaged in only through extraordinary effort.

This symptom cluster appears to be phenomenologically
related to the putative functions of the mesolimbic
dopaminergic projections from the VTA into the ventral
mPFC, amygdala, and ventral striatum [83,84]. These pro-
jections are thought to subserve a ‘reward-related system’
that mediates hedonia, motivation, behavioral reinforce-
ment and psychomotor activity [85–88]. For example,
dopamine (DA) release into the ventral striatum appears
critical for the reinforcing properties of cocaine in rats
[89,90], and is very tightly correlated with the euphoric

response to dextroamphetamine in humans [91]. The tem-
poral relationships between exposure to natural rewards, DA
neuronal firing activity, and extracellular DA concentrations
suggest that ventral striatal DA release is involved in form-
ing associations between salient contextual stimuli and
internal rewarding events [88,92]. The DA signal may also
participate in regulating the timing of behavioral selection
by facilitating switching between behaviors and attentional/
cognitive sets as reinforcement contingencies change
[93,94]. Mesolimbic DA release also modulates afferent
synaptic transmission from non-dopaminergic projections
into the ventral striatum, PFC, amygdala, hypothalamus,
and other limbic structures that may play more critical roles
in maintaining behavioral reinforcement [53••,78,83,88].

The anhedonia, amotivation and psychomotor slowing of
depression, and the euphoria, hypermotivational state and
psychomotor restlessness of mania, have led to the hypoth-
esis that mesolimbic DA function is decreased and
increased, respectively, in the depressed and manic phases
of BD [83,84,95]. This hypothesis is corroborated by 
pharmacological evidence and cerebrospinal fluid (CSF)
DA metabolite concentrations [95,96]. Anhedonia is also 
evident in depressive syndromes arising secondary to con-
ditions such as Parkinson’s disease or cocaine abstinence
(in cocaine-dependent individuals) that are putatively
associated with deficits of DA function [83,97].

In primary MDD and BD, some of the cortical and subcor-
tical targets of the mesolimbic DA system have reduced
grey matter volume and cellular abnormalities. The volume
of the caudate and nucleus accumbens area is abnormally
decreased in MRI and post mortem studies of MDD
[98,99]. The amygdala and subgenual PFC have reductions
in grey matter and glial cells, with no equivalent reduction
in neurons (implying that a decrement in neuropil accounts
for the volumetric reduction; for a review, see [3]). These
histopathological changes may conceivably interfere with
the neurotransmission related to reward processing.

In addition, projections from the ventral mPFC into the
VTA [66,74] have been shown to modulate the electro-
physiological responses of VTA DA neurons, suggesting
another mechanism through which the abnormalities of
structure and function in the subgenual PFC may alter
reward-related processing. In rats, electrical or glutamater-
gic stimulation of mPFC areas that include prelimbic cortex
elicits burst firing patterns from DA cells in the VTA and
increases DA release in the nucleus accumbens [100,101].
These phasic, burst firing patterns of DA neurons are
thought to encode information relating to stimuli that pre-
dict reward and to deviations between such predictions and
the actual occurrence of reward [92]. The hypo- and hyper-
metabolism found in the subgenual PFC in the depressed
and manic phases of BD, respectively, thus suggest the
hypothesis that stimulation of VTA neurons by subgenual
PFC neurons is correspondingly diminished and facilitated,
respectively, in depression and mania [76]. Such functional
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changes could conceivably be clinically manifested by the
hedonic misperceptions and altered motivational states that
characterize mood disorders.

Conclusions
The neuroimaging and neuropathological data recently
acquired in studies of primary mood disorders have identi-
fied both structural and functional abnormalities in the
orbital and medial PFC, the amygdala, and related parts of
the striatum and thalamus. The areas where such studies
demonstrate persistent metabolic abnormalities, reductions
in cortex volume, and histopathological changes in primary
mood disorders appear to modulate emotional behavior and
stress responses, based upon evidence from brain mapping,
lesion analysis, and electrophysiological studies of humans
and experimental animals. These results thus support a
neural model of depression in which dysfunction involving
regions that modulate or inhibit emotional behavior may
result in the emotional, motivational, cognitive, and behav-
ioral manifestations of mood disorders.
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